منابع مشابه
Truncated Incremental Search: Faster Replanning by Exploiting Suboptimality
Incremental heuristic searches try to reuse their previous search efforts whenever these are available. As a result, they can often solve a sequence of similar planning problems much faster than planning from scratch. State-of-the-art incremental heuristic searches such as LPA*, D* and D* Lite all work by propagating cost changes to all the states on the search tree whose gvalues (the costs of ...
متن کاملIncremental Truncated LSTD
Balancing between computational efficiency and sample efficiency is an important goal in reinforcement learning. Temporal difference (TD) learning algorithms stochastically update the value function, with a linear time complexity in the number of features, whereas least-squares temporal difference (LSTD) algorithms are sample efficient but can be quadratic in the number of features. In this wor...
متن کاملPhase Retrieval via Incremental Truncated Wirtinger Flow
In the phase retrieval problem, an unknown vector is to be recovered given quadratic measurements. This problem has received considerable attention in recent times. In this paper, we present an algorithm to solve a nonconvex formulation of the phase retrieval problem, that we call Incremental Truncated Wirtinger Flow. Given random Gaussian sensing vectors, we prove that it converges linearly to...
متن کاملEfficient Incremental Search for Moving Target Search
Incremental search algorithms reuse information from previous searches to speed up the current search and are thus often able to find shortest paths for series of similar search problems faster than by solving each search problem independently from scratch. However, they do poorly on moving target search problems, where both the start and goal cells change over time. In this paper, we thus deve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2016
ISSN: 0004-3702
DOI: 10.1016/j.artint.2016.01.009